Lab Format

- 1. Title of Lab, Name, Partner's Name, Date!
- 2. Purpose
 - brief statement about physical phenomena studied in lab
 - What physical quantities is the experiment meant to determine?
 - What hypotheses about theoretical relationships will be tested?
- 3. Apparatus
 - point form list of apparatus
- 4. Theory
 - discuss theory involved in the experiment
 - include all formulas that are used in calculations

5. Procedure

- discussion of what:
 - measurements made, how they were made, and how they were used
- diagrams are useful
- do **not** recopy lab manual
- do not spend lots of time discussing detailed instructions related to software settings
 just give a brief description of the setup
- 6. Results (Data)
 - most data should be given in tables
 - include units(!) and errors(!)
 - errors and values **must** be rounded appropriately
 - include both raw data and calculated data
 - data values are should be listed before or after data table

7. $\underline{\text{Analysis}}$

- $\bullet\,$ show sample calc'n $and\,$ sample error calc'n for $each\,$ formula used
 - clearly indicate what is being calculated (title)
 - give formula, show substitution of values and give result
 - include units at all steps in calc'n
 - show calc'n of value and calc'n of error in value seperately
- include eq'n of best fit line to data in analysis section or on graph
 - include errors in slope and intercept
 - include units in slope and intercept
 - round error and value appropriately

- 8. Graphs
 - done using a plotting program
 - each graph should be a full page
 - graphs can be included at the end of lab
 - informatively titled and clearly labelled
 - label axes and give units for quantities on axes
 - if data expected to exhibit linear relationship
 - include best fit line on graph
 - include eq'n of best fit on graph on in analysis

9. Discussion:

- Any extra questions in the lab, give your answers in paragraph form in this section. Don't repeat the questions. Give the answer in a way that explains the question and the answer.
- Any brief calc'ns involved can be included as well. Alternatively, you could include them in the analysis section.
- *Hint*: Some of these questions may imply sources of error that you can include in the latter part of the conclusion.

10. Conclusion

- The conclusion(s) of scientific experiment are of two types:
 - (a) Determination of the value of a physical quantity
 - give numerical results with errors(!)
 - state if result agrees with accepted or theoretical value within error
 - (b) Verification of hypothesized relationship between physical quantities
 - discuss what theoretical relationships were verified
 - discuss how experimental results relationship was verified by data
- In laboratory period of a science course, other (secondary) conclusions may be asked for
 - for example: conclusions about equipment or methods used
 - secondary conclusions should only be discussed after main results of experiment
- Brief discussion of possible sources of error (can be a separate section)
- 11. Sources of Error
 - assumptions and/or simplifications that were not taking into account in the expt'l design
 - try to describe how they would affect experimental results (ie. increase, decrease or random?)
 - "human error" is **not** acceptable source of error
 - if you realize, after the fact, that a mistake was made during the lab, it is useful to mention this, but this is not really what is meant by *Sources of Error*.

General Comments

- The order of these sections is strict, except that graphs may be included at the end
- If labs have multiple parts, could divide lab into different, clearly indicated, sections
 - Exception: only one conclusion
- Report should not be overly long!

—

- Give reader clear idea of what was done and the results
 - CLEAR and CONCISE
 - * point form OK, but don't overdo it
 - Do not assume that reader knows what the lab was about!
 - \ast should be able to understand basically what was done without reading lab manual
- In presentation of all data and results, give the value and error in the value with the same exponent in scientific notation
- Neatness is absolutely critical
 - Word processor required
 - You must turn in a legible and comprehensible lab writeup!