1 Propagation of Uncertainties and Errors

1.1 Law of Propagation of Uncertainty

Propagation of errors is used when mathematical operations are performed on one or more measurements. The goal is to find the mean error of the result given the mean error of the input values.

The uncertainty σ_{z} of a quantity $Z=f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right)$ (Z is known as the output) that depends on N input quantities $x_{1}, x_{2}, x_{3}, \ldots, x_{N}$ is found from ${ }^{1}$

$$
\begin{equation*}
\sigma_{Z}^{2}=\sum_{i=1}^{N}\left(\frac{\partial f}{\partial x_{i}}\right)^{2} \sigma_{i}^{2}+\sum_{i=1}^{N} \sum_{j \neq i}^{N} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \sigma_{i j} \tag{1.1}
\end{equation*}
$$

where σ_{i}^{2} is the variance of x_{i} and $\sigma_{i j}$ is the covariance of x_{i} and x_{j}. For example, x_{1} could be position x, x_{2} could be position y, and x_{3} time t.

If the input quantities are independent (as is often the case), then the covariance $\sigma_{i j}$ is zero and the second term vanishes.

Use of equation 1.1 allows us to calculate the combined error for any computational combination of measured or input variables.

1.2 Applications of the Law of Propagation of Uncertainties

The result of a calculation where the input values have uncertainties will itself have an uncertainty. To quantify it, the following rules are provided which are derived using equation 1.1. Here the notation is $z=z(x, y, t \ldots)$ and we wish to calculate σ_{z}, given values for $\sigma_{x}, \sigma_{y} \sigma_{z}$. Note that x, y, and t are assumed to be independent, so the second term in equation 1.1 is zero. The following rules calculate invalid results when x, y, and t are not independent.

1.2.1 Sum or Difference

$$
z=x+y \quad \sigma_{z}=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}
$$

[^0]$$
z=x-y \quad \sigma=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}
$$

1.2.2 Multiplication and Division

$$
\begin{array}{ll}
z=x y & \sigma_{z}=|z| \sqrt{\left(\frac{\sigma_{x}}{x}\right)^{2}+\left(\frac{\sigma_{y}}{y}\right)^{2}} \\
z=\frac{x}{y} & \sigma_{z}=|z| \sqrt{\left(\frac{\sigma_{x}}{x}\right)^{2}+\left(\frac{\sigma_{y}}{y}\right)^{2}}
\end{array}
$$

1.2.3 Multiplication and Division by an exact value c

$$
z=c \cdot x \quad \sigma_{z}=|c| \cdot \sigma_{x} \quad z=\frac{x}{c} \quad \sigma_{z}=\frac{\sigma_{x}}{c}
$$

Example: $z=x+y-3 t, \sigma_{z}=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}+\left(3 \sigma_{t}\right)^{2}}$

1.2.4 Exact Power

Here the value of x is not independent of itself in, for example, $\left(x \pm \sigma_{x}\right)^{2}$.

$$
z=x^{n} \quad \sigma_{z}=|z|\left(|n| \frac{\sigma_{x}}{|x|}\right)
$$

Example: $z=\frac{x y}{t^{3}} \quad \sigma_{z}=|z| \sqrt{\left(\frac{\sigma_{x}}{|x|}\right)^{2}+\left(\frac{\sigma_{y}}{|y|}\right)^{2}+\left(\frac{3 \sigma_{t}}{t}\right)^{2}}$

1.2.5 Special functions

1.2.5.1 Functions of One Variable $z=f(x)$

Equation 1.1 will now have $N=1$, so $\sigma_{z}^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \sigma_{i}^{2}$ which can be stated as $\sigma_{z}=\left(\frac{\partial f}{\partial x}\right) \sigma_{i}$ after taking the square root of both sides. The following examples are developed using this formulation.

$$
\begin{gathered}
z=\sin (x) \quad \sigma_{z}=|\cos x| \sigma_{x} \quad \text { for } \sigma_{x} \text { in radians } \\
z=\cos (x) \quad \sigma_{z}=|-\sin x| \sigma_{x} \quad \text { for } \sigma_{x} \text { in radians } \\
z=\ln x \quad \sigma_{z}=\frac{\sigma_{x}}{|x|} \\
z=\mathrm{e}^{x} \quad \sigma_{z}=\mathrm{e}^{x} \cdot \sigma_{x} \quad \text { and } \quad z=e^{5 x} \quad \sigma_{z}=5 e^{x} \sigma_{x}
\end{gathered}
$$

1 Propagation of Uncertainties and Errors

1.2.5.2 Functions of Two Variables

If x and y are independent, $z=f(x, y)$ and equation 1.1 becomes $\sigma_{z}=\sqrt{\left(\frac{\partial f}{\partial x} \sigma_{x}\right)^{2}+\left(\frac{\partial f}{\partial y} \sigma_{y}\right)^{2}}$. Consider for example,

$$
x_{1}=x_{0}+v t
$$

where $x_{0}=8.2 \pm 0.2 \mathrm{~cm}, v=-20.2 \pm 0.4 \mathrm{~cm}$ and $t=0.14 \pm 0.02 \mathrm{sec}$. First consider $v t$ as that involves one mathematical operation:

$$
\begin{gathered}
\sigma_{v t}=v t \sqrt{\left(\frac{\sigma_{v}}{v}\right)^{2}+\left(\frac{\sigma_{t}}{t}\right)^{2}}=|-2.828 \mathrm{~cm}| \sqrt{\left(\frac{0.4 \mathrm{~cm}}{-20.2 \mathrm{~cm}}\right)^{2}+\left(\frac{0.02 \mathrm{sec}}{0.14 \mathrm{sec}}\right)^{2}} \\
\sigma_{v t}=0.4078 \mathrm{~cm}
\end{gathered}
$$

Now consider the addition of x_{0} and $v t$:

$$
\begin{gathered}
x_{1} \pm \sigma_{x 1}=(8.2 \pm 0.2 \mathrm{~cm})+(-2.828 \pm 0.4078 \mathrm{~cm}) \\
x_{1}=5.4 \mathrm{~cm} \pm \sqrt{(0.2 \mathrm{~cm})^{2}+(0.4078 \mathrm{~cm})^{2}} \\
x_{1}=5.4 \pm 0.5 \mathrm{~cm}
\end{gathered}
$$

when properly rounded.

[^0]: ${ }^{1}$ An Introduction to Error Propagation: Derivation, Meaning and Examples of Equation $C_{Y}=$ $F_{X} C_{X} F_{X}^{T}$ by Kai Oliver Arras, École Polytechnique. This can also be written as $\sigma_{Z}^{2}=$ $\sum_{i=1}^{N}\left(\frac{\partial f}{\partial x_{i}}\right)^{2} \sigma_{i}^{2}+2 \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \sigma_{i j}$. The factor of 2 comes from the cross terms. Note how the i and j subscripting has changed.

